Experience with large STEM models - how to build and how to handle them

Dr. Thomas M. Knoll

Technische Universität Chemnitz

knoll@etit.tu-chemnitz.de

https://www.tu-chemnitz.de/etit/kn/team/knoll/

- 1. Cover Story a large STEM model for LTE networks
 - 1.1 Techno-economic Modelling with STEM
 - 1.2 Selected Model Structures and Scenarios

1.3 Results

2. Look behind the Scenes

2.1 How to create large STEM models

2.2 How to handle large STEM models

3. Summary & Wish List

A detailed STEM model for LTE networks

- Modelling effort started within the EU Celtic MEVICO project
- Starting from a simple roll-out model, it turned into an universal Germany type LTE model containing:
 - Access region dimensioning (template with up to 60 POPs)
 - ATCA based EPC modelling
 - "snap-in" bin packing for ATCA blades, shelves and racks
 - Combined CAPEX and OPEX cost & power consumption and energy dissipation figures included
 - Formula based intra-POP and inter-POP transport cost modelling
 - IXP interconnects, Caching and Operator own Services considered
 - Resource collections for telco- and non-telco specific cost tracking
 - Parameter exchange among partners using 7 Excel files
- Following slides cover some details which are normally presented in public

Combined CAPEX & OPEX for Techno-economic modelling

Techno-economic modelling – What is it?

- Business case modelling taking into account the <u>technical dependencies</u> and constraints during the process of <u>cost and revenue calculations</u>
- Long term business planning supporting strategic decisions and medium term operations and management decisions
- <u>Periodic model runs</u> with adopted input for result consolidation, operations controlling and decision valuation
- <u>Sensitivity analysis</u> reveals focus areas/elements for optimization

Techno-economic modelling – What is it not?

- No replacement for network planning
- Normally not inventory based
- No real-time or short term monitoring or controlling

Techno-economic Modelling with STEM

Input

- Model structure (market / service / resource elements)
- Element dependencies (formulae, transformations)
- Parameter (S-curve, time series, constants etc.)
- Input provided within STEM or from Excel

STEM model

- Graphical
 model input
- Parameter
 interpolation
- Element dimensioning and replication (templates)
- Model run with result collection and graphical display
- Optionally Excel report creation

Output

- Technical results

 (installed units, utilization, demand and traffic values etc.)
- *Financial results* (CAPEX, OPEX, revenue, balance sheet, cash flow, profit & loss, NPV, etc.)
- Output provided within STEM or as Excel reports

(STEM ... Strategic Telecoms Evaluation Model)

Techno-economic Modelling with STEM

Cost modelling capabilities

• Combined CAPEX + OPEX

Fixed Assets			
Capital Cost	Constant { 25.000,0 }		
Residual Value	Constant { 0,00 }		
Maintenance Cost	Constant { 3.000,0 }		
Churn Cost	Constant { 1.000,0 }		
Decommissioning Cost	Constant { 0,00 }		
Leased Facilities			
Connection Cost	Constant { 5.000,0 }		
Rental Cost	Constant { 0,00 }		
Usage Cost	Constant { 0,00 }		
Overheads			
Operations Cost	Constant { 0,00 }		
Units			
Global Currency Unit	EUR		
Cost Period	Year		
Cost Trends			
Calibration Period	YO		
Use Global Trends	Yes		

Template replication

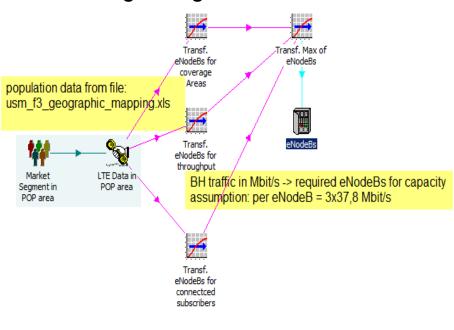
- Assign elements to template
- Define parameters for copies
- Replication during model run

Collections

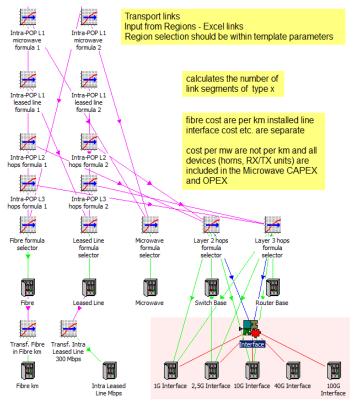
Group elements into collection

 Enables result tracking for the group

Scenarios and Sensitivities


- Switch model parameters for scenarios
- Vary model parameters by Sensitivit e.g. ±20% for sensitivity analysis

LTE Model Structures and Scenarios

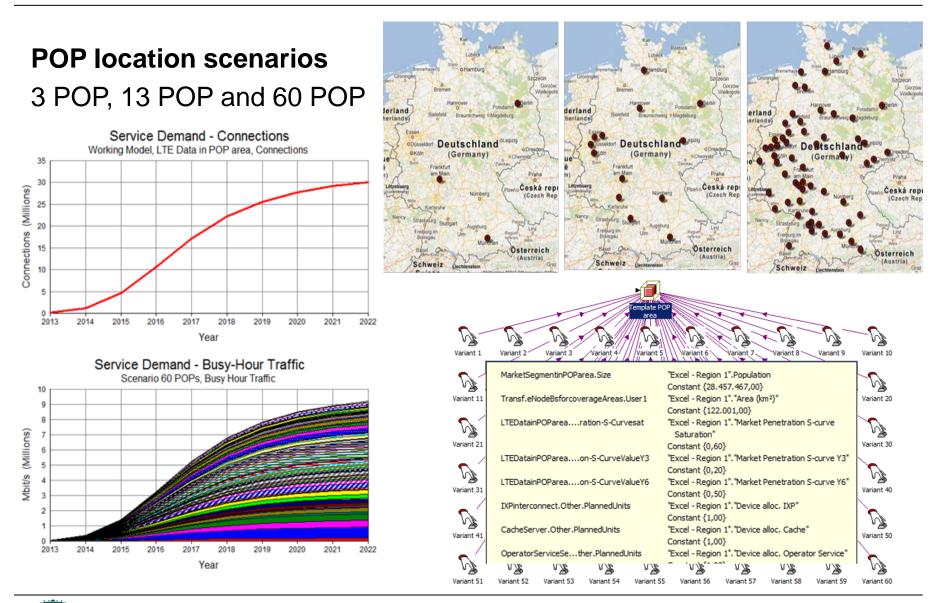

Access network dimensioning

- Market segment
- Service penetration and tariff
- eNodeB demand by:
 - Coverage, Throughput and
 - Signalling

Aggregation network dimensioning

- Intra-POP transport
- Inter-POP transport
- Formula based technology mix

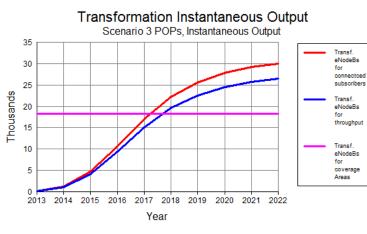
Selected Model Structures and Scenarios

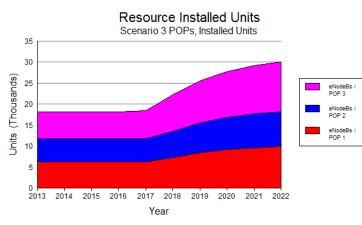

Core network dimensioning ATCA "snap in" dimensioning POP specific EPC modelling Shelf upgrade by utilization 60% 1,2 ATCA based technology • # of slots # of shelf # of shelf # of shelf used used 2 slot slots usage % 5 slot slots usage % 14 slot slots usage % 2 3 step-up" threshold 8 50% 1 Transf. Serv. ATCA Service ATCA Service Aware Blade Blade - Numb. Blade 2 1 2 100% Conn. 3 3 60% Subscribers 1 1 4 80% 4 Transf. max 5 1 5 100% Service Blades 6 5 50% 1 100% Transf. Serv 7 2 100% 5 1 1 100% Blade - Traffic 0 Capacity 1 57% 1 9 64% 4 71% Sum of Hub Sum of Service Sum of Service Sum of Sum of Blade Aware Blade Blade Interface Management 1 11 79% Transf. 2 slot 2 slot ATCA Transf. shelf Blade Blade 1 86% Transf. Serv. dimensioning shelfs Units to x14 Blade - number full Rack eNBs 40G Ports / ≁ Transf. Sum of Blades Sum of Blades Transf. 5 slot 5 slot ATCA Transf. x14 Transf. x14 & Racks Ports full Rack to shelfs x5 & x2 dimensioning 10G Ports remaining x5 demand shelfs Transf. 14 slot 14 slot ATCA remaining x14 shelfs full racks dimensioning Transf. remaining x14

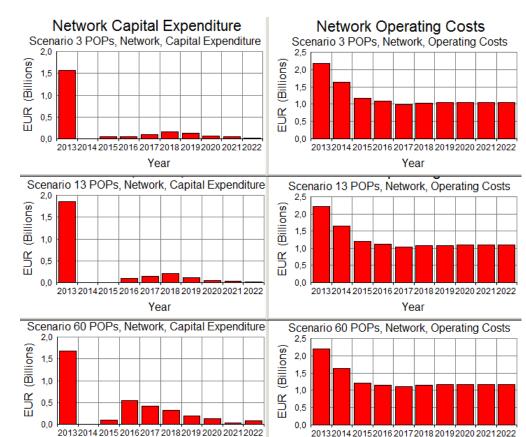
STEM User Group Meeting 2014 – knoll@etit.tu-chemnitz.de

full Rack to

Selected Model Structures and Scenarios

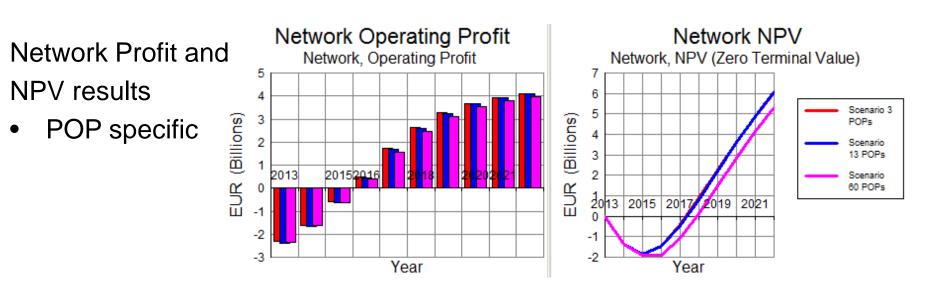



STEM User Group Meeting 2014 - knoll@etit.tu-chemnitz.de

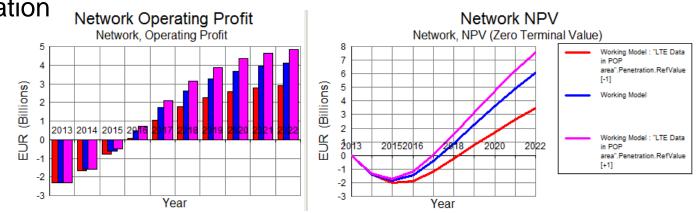

Results

Dimensioning and CAPEX & OPEX results

General eNodeB dimensioning



Combined overall CAPEX and OPEX report


Installed eNodeBs for 3 POP scenario

Results

 Sensitivity ±20% service penetration

STEM User Group Meeting 2014 - knoll@etit.tu-chemnitz.de

How to create large STEM models

- Graphical input
- Text based input
- Script programming

How to handle large STEM models

- Powerful machines and Patience
- Excel to control model runs
- Dodgy TU Chemnitz method
- Memory issues

Look behind the Scenes – How to Create

How to create large STEM models

- Graphical input
 - Native input method
 - Left / right mouse click customs....
 - Optimized over the years
 - Element placement,
 - Element selection,
 - Grouped parameter input,
 - Intelligent element linking etc.

How to create large STEM models

- Text based input
 - "*.dtl" ASCII file structure easily guessed
 - Close the STEM editor
 - Backup the "original" "*.dtl" file
 - Open "*.dtl" in text editor (recommend using Notepad++)
 - Do the manual editing
 - Beware not to destroy its structure

 → destroys the file when opened up
 → therefore the backup
 - Use the edited "*.dtl" file as usual

```
CostIndex "Excel - Device alloc. S-GW" = {
next = "Excel - Device alloc. P-GW",
```

```
User1 = {
```

```
Constant = $3!"Allocation (EPC technology)"]$E$8,

},

User2 = {

Constant = $3!"Allocation (EPC technology)"]$E$9,

},

User3 = {

Constant = $3!"Allocation (EPC technology)"]$E$10,

},

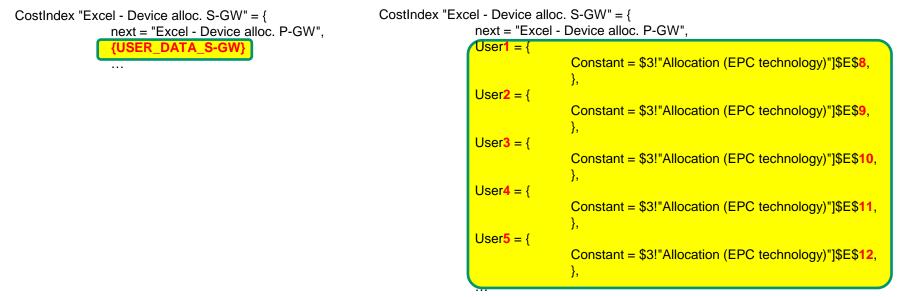
User4 = {

Constant = $3!"Allocation (EPC technology)"]$E$11,

},

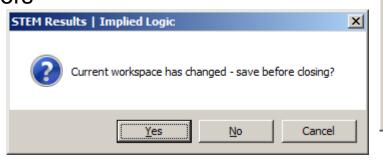
User5 = {

Constant = $3!"Allocation (EPC technology)"]$E$12,


},

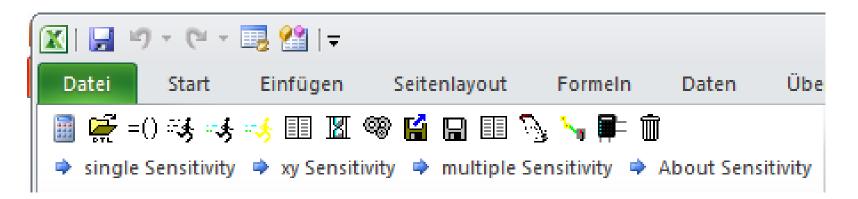
...
```


How to create large STEM models


- Script programming
 - Python or Pearl scripts to generate the "*.dtl" file
 - Tedious index and cell counts cry for generation by programmed loops
 - Generate the entire file or
 - Selectively replace placeholders within a given dtl skeleton file
 > simple string replacement {TAGS} with loop generated text lines

Look behind the Scenes – How to Handle

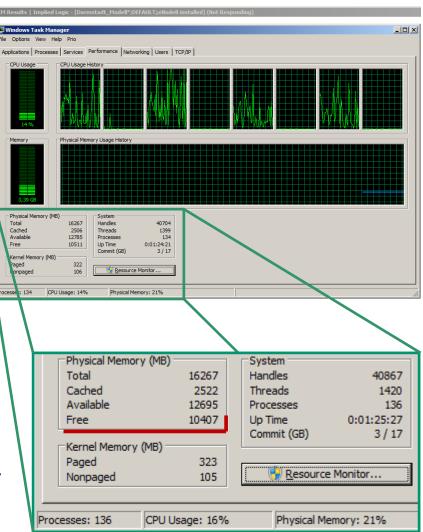
_	ge STEM models ines and Patience	STEM Results Implied Logic File *.dtm not found. It is essential to re-run t	the model now in order to view the results.
System Rating: Processor: Installed memory (RAM): System type: Pen and Touch:	For Your Windows Experience Index Intel(R) Core(TM) <u>i7-2670QM CPU @ 2</u> 16,0 GB (15,9 GB usable) 64-bit Operating System No Pen or Touch Input is available for	2.20GHz 2.20 GHz	OK Cancel
Keep watching for error dialogues Would be nice to a answers	intermitted	Select Model to Run Look in: STEM Name Manual MeVICO NGN 2 report	▼ ← € ↔ • Date modified • Type ▲ 20.11.2013 14:42 File folde 06.06.2013 15:18 File folde 20.11.2013 14:42 File folde 05.12.2013 14:22 File folde



Look in: 🚺 STEM		
Name 🔺	▼ Date modified ▼	Туре 🔺
퉬 Manual	20.11.2013 14:42	File folde
MEVICO	06.06.2013 15:18	File folde
NGN	20.11.2013 14:42	File folde
퉬 o2 report	05.12.2013 14:22	File folde
Report Models	27.04.2012 01:35	File folde
sensitivity_test.scn	27.04.2012 01:35	File folde 🖵
<u>1</u>		•
File name: 1.dtl		Open
Files of type: STEM Model (*.dtl)	•	Cancel

How to handle large STEM models

- Excel to control model runs
 - Click the STEM Add-In bar within Excel to run STEM models in the background
 - Use Visual Basic programs to trigger the same model runs now by program control and coordinate input feeding and result collection in those VBA macros


How to handle large STEM models

- Dodgy TU Chemnitz method
 - Windows processes keystrokes and mouse events in event queues
 - Simulate keystrokes and mouse clicks using Python scripts
 - **Before and after model runs, copy files** by Python to change input settings, run different models, collect the produced output for later result analysis, etc.
 - Advise Python to take screenshots before and after each event to document smooth runs or any error windows popping up
 - If you know which **intermitted dialogues** pop up and how to answer them, you can now put Python into action to **emulate the interaction** ...

How to handle large STEM models

- Memory issues
 - 16 GB RAM is plenty for model runs
 - Still error about insufficient heap space despite "Available " physical memory
 - Reason: Windows Super/Prefetch
 consumes GBs of RAM for caching
 - Not required with SSDs should automatically be disabled, but often is not
 - Disable using the registry keys see the link below for details: <u>http://www.thewindowsclub.com/disabl</u> <u>e-superfetch-prefetch-ssd</u>

- Complex ventures require techno-economic modelling, which often results in large STEM models
- STEM nicely covers CAPEX, OPEX, Financial Statements and Sensitivity analysis at once → keep up this level of detail
- Configurable and generic LTE network model for equipment, transport and energy cost tracking as well a revenue, profit and NPV calculations
- Excel and scripting languages help to prevent tedious input and model run procedures
- Simple knowledge about Windows memory handling and deactivation of useless services speed up model runs

- "% vs. %" result reports for sensitivities \rightarrow suggested last year
- Option for automatic removal of absolute path references → exists?
- Automatic handling options for intermitted dialogue questions
- Enlarge tiny file selection dialogue
- Biggest show stopper for large models
 - 60 User Data field limitation
 - 60 Template Variant limitation

I keep saying: Please, please do something about it! e.g. double it to 120

Reason: some operators have more than 70 POPs ...

Thank you for your attention.

